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Abstract Collective distances in quantummultimolecular polyhedra,which can be set
as a scalar index associated to the variance vector, enhance the role of the pair density
similarity matrix. This paper describes a simplified but efficient algorithm to compute
triple, quadruple or higher order density similarity hypermatrices via an isometric
decomposition of the pair similaritymatrix. Such possibility opens theway to use these
similarity elements in quantumQSARand in the description of scalar condensed vector
statistical like indices, for instance skewness and kurtosis. This might lead the way to
describe the collective structure of quantum and classical multimolecular polyhedra.

Keywords Quantum molecular similarity · Quantum multimolecular polyhedra ·
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1 The origin of the density function representation problem

A collective distance [1–5], involving the density function vertices of some quantum
multimolecular polyhedron P = {ρI |I = 1, N } [2,3], can be described in terms of
the so-called variance function: |χ〉 and its complete sum 〈|χ〉〉 [3–5], which might
be named condensed variance index. Basically, calculation of generalized collective
Euclidian distances involve the quantum polyhedron set of N vertices, which are made
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by a density function set, at the same time this vertex set can be considered as forming
the tag set of some quantum object set [3].

Using the involved polyhedron P vertex density functions, from them it can be
easily computed a Gram matrix, which in the present particular study also becomes
the similarity matrix, attached to the molecules associated to the polyhedron quantum
density functions. The polyhedron similarity matrix Z is defined by means of the
pair density similarity integrals scalar products: Z = {zI J = 〈ρIρJ 〉 |I, J = 1, N }.
Recent research results [2–5] suggest that similarity matrices become a relevant piece
of knowledge in order to obtain the condensed variance function index: 〈|χ〉〉. This
index, which provides a resumed or condensed scalar information about the quantum
polynomial P structure, has been recently demonstrated [3] that it can be expressed
as a simple average of the trace and complete sum of the similarity matrix, using:

〈|χ〉〉 = N−1
(
Tr [Z] − N−1 〈Z〉

)
,

where: Tr [Z] = ∑
I z I I and 〈Z〉 = ∑

I
∑

J z I J .

2 Quantum molecular polyhedra isometric discrete descriptions

Whenever the pair density similaritymatrixZ, attached to the quantummultimolecular
polyhedron P is known, and if its density functions vertices are corresponding to
really different quantum objects, then P could be also associated to a set of N linearly
independent N−dimensional vectors, acting as columns of some (N × N ) matrix,
for example: A = {|aI 〉 |I = 1, N }. Alternatively, such discrete polyhedron might be
able to generate the similarity matrix in the following way:

AT A = Z = {zI J } → ∀I, J : 〈aI |aJ 〉 = zI J . (1)

Then, if Eq. (1) is solved, it is easy to see that once described the matrix A, its structure
will correspond to find out one of the discrete isometric representations of the quantum
molecular polyhedron density function vertices.

In previous studies carried on [6–38] in the past thirty years, since the first paper
on quantum molecular similarity [39], it was the similarity matrix columns which
were interpreted as some representation of the connected quantum polyhedron density
function vertices. This was explained and set up in terms of projecting every vertex
with respect of the whole density functions vertex set. Although such a possibility
could be well founded, even via the quantum mechanical expectation value concept,
the procedure was not sufficiently studied in deep, as the present study pretend to do.
The main objection, which could be made on this former discrete interpretation of
the metric associated to the polyhedron P , could be based in the fact that the Gram
matrix of the similarity matrix Z columns is just: Z2, see reference [36,40,41] for a
discussion on this issue and other connected problems.

Therefore, the columns of the similarity matrix, even being related to the quantum
polyhedron density functions, could not generate the same metric, as proves the role,
which matrix A bears within the definition in Eq. (1). Consequently, the previous

123



1752 J Math Chem (2015) 53:1750–1758

interpretation of the columns of the similarity matrix Z, which was carried on within
our papers about quantum similarity, even at the light of the wide range of successful
attached applications as previously referenced, might be now considered as a provi-
sional isomorphic notion, which could be easily ameliorated and substituted by the
present isometric conceptual discussion.

On the other hand, Eq. (1) constitutes a well-known linear algebra problem, which
has not a unique solution; see for example [42]. For instance, the decomposition in
(1) even admits the Cholesky triangular decomposition [42] and other variants. In the
present context, as it will become evident in the following paragraphs, it is interesting
to express the scalar products, involving the columns of the matrix A, in terms of
inward products of the same columns, followed by the complete sum of the resultant
vector [43]. That is, one can write the elements of the similarity matrix by means of
the expression:

∀I, J : zI J = 〈ρIρJ 〉 = 〈|aI 〉 ∗ |aJ 〉〉 . (2)

After these preliminary statements, then one might say that there, as a consequence
of decomposition (1) feasibility, it will be present a possible connection describing an
isometric relationship between the quantum object set built by the density functions,
which also form the quantummolecular polyhedron P = {ρI |I = 1, N }, and thefinite
N−dimensional polyhedron A = {|aI 〉 |I = 1, N } ⊂ CN , made by the columns of
the postulated (N × N ) matrix A = {|aI 〉 |I = 1, N }, via the decomposition (1).

That is, knowing some form of the matrix A, in front of the evidence that both
sets {ρI } and {|aI 〉} subtend the same metric matrix Z, then it could be written an
isomorphism:

∀I = 1, N : ρI ↔ |aI 〉 ,

which, due that both sets P and A generate the same metric matrix, maintains the
distances in both generated spaces.

3 Higher order condensed statistical like indices

Higher order statistical-like vectors and their condensed indices can be then evaluated.
As an example of this possibility, one can envisage the computation of the quantum
molecular polyhedron skewness and kurtosis vectors and their respective scalar indices
[5], obtained by the complete sumof their elements. However, to perform such calcula-
tions there are needed subsequent higher order similarity integrals involving three and
four density functions respectively [44]. The triple and quadruple similarity integrals
have been discussed in several instances and diverse applications proposed [45,46].
Nevertheless, such mentioned studies have been carried out in many occurrences the-
oretically [44–52] and in few cases practically, see for instance a recent study [47].
The reason for this kind of published papers evolution might be evidently due to
the storage and computational overload, which represent such higher order similarity
integral calculations. Within the present paper framework the integration problem of
products, involving several density functions, might be avoided once the matrix A is
well-defined and chosen among the most plausible candidates.
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This is so because, once known the column vector set matrix A, then the similarity
integrals elements associated to triple and quadruple density functions, might be easily
approximated by extending the algorithm, which implicitly appears within Eq. (2).

Indeed, it can be supposed that complicated higher order similarity integrals can be
roughly written, knowing the columns of matrix A, by means of their inward matrix
products and the complete sum of resultant vectors. Practically, this can be done by
using the simple expressions:

∀I, J, K : zI J K = 〈ρIρJρK 〉 ≈ 〈|aI 〉 ∗ |aJ 〉 ∗ |aK 〉〉

and

∀I, J, K , L : zI J K L = 〈ρIρJρKρL 〉 ≈ 〈|aI 〉 ∗ |aJ 〉 ∗ |aK 〉 ∗ |aL〉〉

respectively.
Moreover, the possibility to compute approximately any similarity integral, involv-

ing an indeterminate number of density functions, R say, it is also feasible taking into
account a general algorithm, which could be easily written as:

∀IS |IS = 1, N (S = 1, R) : zI1 I2···IR = 〈
ρI1ρI2 · · · ρIR

〉 ≈ 〈∣∣aI1

〉 ∗ ∣∣aI2

〉 ∗ · · · ∣∣aIR

〉〉
.

Then, in this way, the amount of computational work necessary to evaluate triple
and quadruple, or arbitrarily higher order, density similarity hypermatrices could be
reduced to a set of simple operations, just involving the column vectors of the isometric
matrix A.

More explicitly and also in general, it can be written for any similarity integral of
order R the practical algorithm:

∀IS |IS = 1, N (S = 1, R) : zI1 I2···IR ≈
N∑

J=1

(
aJ I1aJ I2 · · · aJ IR

)
,

which constitutes an approximate expression encompassing, from the pair density
similarity matrix Z, where R = 2, up to any similarity hypermatrix or tensor of
arbitrary dimension or rank, involving an arbitrary number of density functions.

4 Discussion about two plausible structures of the isometric matrix

4.1 Similarity matrix structure eigensystem

Preparation of the possible and plausible solutions of Eq. (1) in order to obtain a candi-
date for the isometric matrix A, could be described in the following way. One can start
being aware of the fact, associated to the matrix Z, consisting about that, in practice,
it corresponds to the Gram matrix of a set of linearly independent density functions
forming the quantum multimolecular polynomial P and therefore can be considered a
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metric matrix. Consequently, the similarity matrix can be usually considered symmet-
rical, nonsingular and positive definite. In some cases, though, the similarity-metric
matrix can be, due to molecular superposition fluctuations, not definite [53,54]. One
must be aware of this possibility, acting accordingly and correcting such anomaly, if
possible.

This discussion will only consider that the similarity-metric matrix Z is positive
definite. This is chosen in this manner to avoid the need of discussing many different
possibilities and issues, some of them within the realm of complex algebra. The sim-
ilarity matrix eigensystem can be thus written in matrix form, by means of the matrix
equality:

ZX = X�. (3)

where the eigenvectormatrixX corresponds to anorthogonalmatrix, fulfilling:XT X =
XXT = I and the eigenvalue matrix might be described via a positive definite diagonal
matrix:

� = Diag (θI |I = 1, N ) .

4.2 Isometric matrix structure from the canonical decomposition of the
similarity matrix

From Eq. (3) and the characteristics of its elements it is immediately deduced the
canonical decomposition of the matrix Z, which can be written by means of the triple
matrix product:

Z = X�XT . (4)

Now, the square root of the diagonal eigenvalue matrix can be easily expressed:

�
1
2 = Diag

(√
θI |I = 1, N

)
, (5)

Permitting to define one of the sought isometric matrices fulfilling Eq. (1) by means
of the matrix product:

A = �
1
2 XT , (6)

which has been constructed taking into account that one can write:

� = �
1
2 �

1
2 ,

then it is obvious that the matrix A as defined in Eq. (6), fulfills the decomposition
(1), via satisfying the canonical decomposition (4) at the same time.

Thus, the problem of constructing the matrix isometric to the quantum molecular
polyhedron vertices might be solved in this particular way, by means of a non-
symmetric matrix construction as shown in Eq. (6).
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4.3 Isometric matrix structure from the square root matrix of the similarity
matrix

A related alternative symmetric option to the asymmetric isometric matrix (6), con-
structed as discussed above, might correspond to the choice of the square root of the
similarity matrix as an isometric column candidate, which will be now symbolized as
A1. Such a matrix can be computed without effort using the square root of its eigen-
values as shown in Eq. (5) and computing the symmetric square root matrix via the
Löwdin algorithm [40,55]:

Z
1
2 = X�

1
2 XT .

Of course, it can be now accepted that:

A1 = Z
1
2

because then:

AT
1 =

(
Z

1
2

)T =
(

X�
1
2 XT

)T =
(

XT
)T (

�
1
2

)T
XT = X�

1
2 XT = A1

and thus:

AT
1 A1 = (A1)

2 = Z
1
2 Z

1
2 =

(
Z

1
2

)2 = Z. (7)

However, one must be aware that this result is somehow equivalent to the previous
asymmetric choice of the isometric matrix as described in Eq. (6). This is so, because
the matrix product in Eq. (7) involving A1 and yielding the similarity-metric matrix,
is equivalent to the asymmetric product of the matrix A, as defined in Eq. (6). This
property is due to the orthogonal structure of the eigenvector matrix, as can be straight-
forwardly shown by writing:

AT
1 A1 =

(
X�

1
2 XT

)T
X�

1
2 XT = X�

1
2 XT X�

1
2 XT = X�

1
2 �

1
2 XT = AT A = Z.

Therefore, the asymmetric isometric matrix choice in Eq. (6) appears sufficient for the
purposes of obtaining a decomposition of the similarity matrix as described in Eq. (1).

4.4 Final remark

All the procedures, leading to an isometric matrix, described here, can be also used
within classical multimolecular polyhedra, where each molecule is represented by a
discrete vector made by an arbitrary number of descriptors. That is, the development
of an isometric matrix as described here can be employed whenever each one of the
N classical molecular polyhedral vertices can be considered as some M-dimensional
vector describing a molecule. Then, in this case, it is only necessary to construct the
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associated polyhedron Gram matrix, and use it as the similarity matrix Z has been
used in this paper.

5 Conclusions

A quite simple reasoning, based on the concept of collective distance defined within
a quantum multimolecular polyhedron, which enhances the role of the pair density
similarity-metric matrixZ, permits to construct a newmatrixA, whose columnsmight
be considered isometric to the quantum polyhedron density functions vertices. Such
isometric set of discrete columns also permits to obtain approximate higher order
similarity integrals and the attached similarity hypermatrices, involving an arbitrary
number of density functions. In this way, higher order statistical-like vectors and
condensed indices can be easily constructed, permitting in this manner to numerically
describe any quantum polyhedron.

Acknowledgments The author deeply acknowledges a Prometeo Fellowship granted by the SENESCYT,
Gobierno de la República del Ecuador.

Conflict of interest The author declare that they have no conflict of interest.

References

1. R. Carbó-Dorca, Collective Euclidian distances and quantum similarity. J. Math. Chem. 51, 338–353
(2013)

2. Ramon Carbó-Dorca, Multimolecular polyhedra and QSPR. J. Math. Chem. 52, 1848–1856 (2014)
3. Ramon Carbó-Dorca, Quantum polyhedra, definitions, statistics and the construction of a collective

quantum similarity index. J. Math. Chem. 53, 171–182 (2015)
4. R. Carbó-Dorca, Communications onQuantumSimilarity (4): Collective distances computed bymeans

of Similarity Matrices, as generators of intrinsic ordering among QuantumMultimolecular Polyhedra.
IQCC Technical Report TC-2015-1. WIREs (in preparation, to be accepted)

5. R. Carbó-Dorca; “Collective Vectors, Condensed Indices and Quantum Similarity” IQCC Technical
Report TC-2015-2. Frontiers in Comp. Chem. (In preparation. To be accepted)

6. R. Carbó, B. Calabuig, Molecular similarity and quantum chemistry, in Molecular Similarity, ed. by
M.A. Johnson, G.M. Maggiora (Wiley, New York, 1990)

7. R. Carbó, B. Calabuig, Quantum molecular similarity measures and the N-dimensional representation
of a molecular set: phenyldimethylthiazines. J. Mol. Struct. (Theochem) 254, 517 (1992)

8. R. Carbó, B. Calabuig, Molecular quantum similarity measures and N-dimensional representation of
quantum objects. I. Theoretical foundations. Int. J. Quantum Chem. 42, 1681 (1992)

9. R. Carbó, B. Calabuig, Quantum similarity measures, molecular cloud description and structure–
properties relationships. J. Chem. Inf. Comput. Sci. 32, 600 (1992)

10. R. Carbó, E. Besalú, B. Calabuig, L. Vera, Molecular quantum similarity: theoretical framework,
ordering principles and visualisation techniques. Adv. Quantum Chem. 25, 253–313 (1994)

11. M. Solà, J. Mestres, M. Duran, R. Carbó, Ab initio quantum molecular similarity measures on metal-
substituted carbonic anhydrase (M(II)CA, M=Be, Mg, Mn Co, Ni, Cu, Zn, and Cd). J. Chem. Inf.
Comput. Sci. 34, 1047–1053 (1994)

12. R. Carbó, E. Besalú, Theoretical foundation of quantum similarity molecular similarity and reactivity:
from quantum chemical to phenomenological approaches, inUnderstanding Chemical Reactivity, vol.
14, ed. by R. Carbó (Kluwer, Amsterdam, 1995), pp. 3–30

13. E. Besalú, R. Carbó, J.Mestres,M. Solà,Foundations andRecentDevelopments ofQuantumMolecular
Similarity Topics in Current Chemistry: Molecular Similarity I, vol. 173 (Springer, Berlin, 1995)

123



J Math Chem (2015) 53:1750–1758 1757

14. R. Carbó, E. Besalú, Ll Amat, X. Fradera, Quantum molecular similarity measures (QMSM) as a
natural way leading towards a theoretical foundation of quantitative structure–properties relationships
(QSPR). J. Math. Chem. 18, 237–246 (1995)

15. R. Carbó, E. Besalú, Ll Amat, X. Fradera, On quantum molecular similarity measures (QMSM) and
indices (QMSI). J. Math. Chem. 19, 47–56 (1996)

16. P. Constans, X. Fradera, L. Amat, R.Carbó, Quantum molecular similarity measures (QMSM) and
the atomic shell approximation (ASA), in Proceedings of the 2nd. Girona Seminar on Molecular
Similarity, July 1995. Advances in Molecular Similarity, vol. 1 (JAI Press, Greenwich (Conn.), 1996),
pp. 187–211

17. Ll Amat, E. Besalú, X. Fradera, R. Carbó-Dorca, Application of molecular quantum similarity to
QSAR. Quant. Struct. Act. Relat. 16, 25–32 (1997)

18. M. Lobato, L. Amat, E. Besalú, R. Carbó-Dorca, Structure–activity relationships of a steroid family
using quantum similarity measures and topological quantum similarity indices. Quant. Struct. Act.
Relat. 16, 1–8 (1997)

19. D. Robert, R. Carbó-Dorca, A formal comparison between molecular quantum similarity measures
and indices. J. Chem. Inf. Comput. Sci. 38, 469–475 (1998)

20. R. Carbó-Dorca, On the statistical interpretation of density functions: ASA, convex sets, discrete
quantum chemical molecular representations, diagonal vector spaces and related problems. J. Math.
Chem. 23, 365–375 (1998)

21. R. Carbó-Dorca, E. Besalú, A general survey of molecular quantum similarity. J. Mol. Struct.
(Theochem) 451, 11–23 (1998)

22. D. Robert, L. Amat, R. Carbó-Dorca, 3D QSAR from tuned molecular quantum similarity measures:
prediction of the CBG binding affinity for a steroids family. J. Chem. Inf. Comput. Sci. 39, 333–344
(1999)

23. R. Carbó-Dorca, L. Amat, E. Besalú, X. Gironés, D. Robert, Quantum mechanical origin of QSAR:
theory and applications. J. Mol. Struc. (Theochem) 504, 181–228 (2000)

24. R. Carbó-Dorca, Stochastic transformation of quantum similarity matrices and their use in quantum
QSAR models. Int. J. Quantum Chem. 79, 163–177 (2000)

25. R. Carbó-Dorca, E. Besalú, Quantum theory of QSAR. Contrib. Sci. 1(4), 399–422 (2000)
26. R. Carbó-Dorca, L. Amat, E. Besalú, X. Gironès, D. Robert, Quantummolecular similarity: theory and

applications to the evaluation of molecular properties, biological activity and toxicity, inMathematical
and Computational Chemistry: Fundamentals of Molecuar Similarity (Kluwer/Plenum, 2001), pp.
187–320

27. E. Besalú, X. Gironés, Ll Amat, R. Carbó-Dorca, Molecular quantum similarity and the fundaments
of QSAR. Acc. Chem. Res. 35, 289–295 (2002)

28. X. Gironés, R. Carbó-Dorca, Molecular similarity and quantitative structure–activity relationships,
in Computational medicinal Chemistry for Drug Discovery, ed. by P. Bultinck, H. De Winter, W.
Langenaeker, J.P. Tollenaere (Marcel Dekker, New York, 2004), pp. 365–385

29. R. Carbó-Dorca, X. Gironés, Foundation of quantum similarity measures and their relationship to
QSPR: density function structure, approximations and application examples. Int. J. Quantum Chem.
101, 8–20 (2005)

30. P. Bultinck, X. Gironés, R. Carbó-Dorca, Molecular quantum similarity: theory and applications, in
Rev. Comput. Chem., vol. 21, ed. by K.B. Lipkowitz, R. Larter, T. Cundari (Wiley, Hoboken, USA,
2005), pp. 127–207

31. R. Carbó-Dorca, Theoretical foundations of quantum-quantitative structure–properties relationships.
QSAR 2006 SAR and QSAR in Environmental Research 18, 265–284 (2007)

32. R. Carbó-Dorca, S. Van Damme, A new insight on the quantum quantitative structure–properties
relationships (QQSPR). Intl. J. Quantum Chem. 108, 1721–1734 (2007)

33. R. Carbó-Dorca, A. Gallegos, Á.J. Sánchez, Notes on quantitative structure–properties relationships
(QSPR) (1): a discussion on a QSPR dimensionality paradox (QSPR DP) and its quantum resolution.
J. Comput. Chem. 30, 1146–1159 (2008)

34. P. Bultinck, S. Van Damme, R. Carbó-Dorca, Molecular quantum similarity (Chapter 16), in Theory of
Chemical Reactivity (A Density Functional View), ed. by P. Chattaraj (Taylor & Francis, Boca Raton,
2009), pp. 229–242

35. R. Carbó-Dorca, A. Gallegos, Quantum similarity and quantum QSPR (QQSPR) entry: 176, in Ency-
clopedia of Complexity and Systems Science, vol. 8, ed. by Robert Meyers (Springer, NewYork, 2009),
pp. 7422–7480

123



1758 J Math Chem (2015) 53:1750–1758

36. L.D. Mercado, R. Carbó-Dorca, Quantum similarity and discrete representation of molecular sets. J.
Math. Chem. 49, 1558–1572 (2011)

37. R. Carbó-Dorca, Notes on quantitative structure–properties relationships (QSPR) (3): density functions
origin shift as a source of quantumQSPR (QQSPR) algorithms in molecular spaces. J. Comput. Chem.
34, 766–779 (2013)

38. R. Carbó-Dorca, Quantum similarity (Chapter 17), in Concepts and Methods in Modern Theoretical
Chemistry, vol. 1, ed. by S.K. Ghosh, P.K. Chattaraj (CRC Press, Taylor & Francis, Boca Raton, 2013),
pp. 349–365

39. R. Carbó, L. Leyda, M. Arnau, How similar is a molecule to another? An electron density measure of
similarity between two molecular structures. Intl. J. Quantum Chem. 17, 1185–1189 (1980)

40. R. Carbó-Dorca, Symmetrical overlap transformations of function basis sets: the LCAO MO and
quantum similarity practical cases. J. Math. Chem. 50, 741–751 (2012)

41. R. Carbó-Dorca, Quantum similarity matrices column set as holograms of DF molecular point clouds.
J. Math. Chem. 50, 2339–2341 (2012)

42. J.H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford University Press, Oxford, 1965)
43. R. Carbó-Dorca, Inward matrix products: extensions and applications to quantum mechanical founda-

tions of QSAR. J. Mol. Struct. (Teochem) 537, 41–54 (2001)
44. R. Carbó, B. Calabuig, E. Besalú, A. Martínez, Triple density molecular quantum similarity measures:

a general connection between theoretical calculations and experimental results. Mol. Eng. 2, 43–64
(1992)

45. D. Robert, R. Carbó-Dorca, Analyzing the triple density molecular quantum similarity measures with
the INDSCAL model. J. Chem. Inf. Comput. Sci. 38, 620–623 (1998)

46. L. Amat, D. Robert, E. Besalú, R. Carbó-Dorca, Molecular quantum similarity measures tuned QSAR:
an antitumoral family validation study. J. Chem. Inf. Comput. Sci. 38, 624–631 (1998)

47. R. Carbó-Dorca, Triple density quantum similarity measures and the tensorial representation of quan-
tum object sets, in Quantum Chemistry: Theory and Practice, vol. 2, ed. by T. Chakraborty (Apple
Academic Press & Distributed by Taylor & Francis Group, USA, 2012)

48. R. Carbó-Dorca, E. Besalú, Fundamental quantum QSAR (Q2 SAR) equation: extensions, non-linear
terms and generalizations within extended Hilbert–Sobolev spaces. Intl. J. Quant. Chem. 88, 167–182
(2002)

49. R. Carbó-Dorca, Non-linear terms & variational approach in quantum QSPR. J. Math. Chem. 36,
241–260 (2004)

50. R. Carbó-Dorca, Definition of norm coherent generalized scalar products and quantum similarity. J.
Math. Chem. 47, 331–334 (2010)

51. R. Carbó-Dorca, Shell partition and metric semispaces: Minkowski norms, root scalar products, dis-
tances and cosines of arbitrary order. J. Math. Chem. 32, 201–223 (2002)

52. R. Carbó-Dorca, E. Besalú, Shells, point cloud huts, generalized scalar products, cosines and similarity
tensor representations in vector semispaces. J. Math. Chem. 50, 210–219 (2012)

53. R. Carbó-Dorca, E. Besalú, L.D. Mercado, Communications on quantum similarity (3): a geometric-
quantum similarity molecular superposition (GQSMS) algorithm. J. Comput. Chem. 32, 582–599
(2011)

54. R. Carbó-Dorca, A quantum similarity matrix Aufbau procedure. J. Math. Chem. 44, 228–234 (2008)
55. P.O. Löwdin, On the non-orthogonality problem connected with the use of atomic wave functions in

the theory of molecules and crystals. J. Chem. Phys. 18, 365–376 (1950)

123


	An isometric representation problem in quantum multimolecular polyhedra and similarity
	Abstract
	1 The origin of the density function representation problem
	2 Quantum molecular polyhedra isometric discrete descriptions
	3 Higher order condensed statistical like indices
	4 Discussion about two plausible structures of the isometric matrix
	4.1 Similarity matrix structure eigensystem
	4.2 Isometric matrix structure from the canonical decomposition of the similarity matrix
	4.3 Isometric matrix structure from the square root matrix of the similarity matrix
	4.4 Final remark

	5 Conclusions
	Acknowledgments
	References




